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We study two examples of two-dimensional nonlinear double-diffusive convection 
(thermohaline convection, and convection in an imposed vertical magnetic field) in the 
limit where the onset of marginal overstability just precedes the exchange of stabilities. 
I n  this limit nonlinear solutions can be found analytically. The branch of oscillatory 
solutions always terminates on the steady solution branch. If the steady solution 
branch is subcritical this occurs when the period of the oscillation becomes infinite, 
while if it is supercritical, it occurs via a Hopf bifurcation. A detailed discussion of the 
stability of the oscillations is given. The results are in broad agreement with the larger- 
amplitude results obtained previously by numerical techniques. 

1. Introduction 
Although nonlinear convection has been much studied in recent years, there are few 

exact solutions available. While this perhaps reflects the difficulty of the subject, it 
does not reduce the need for and the usefulness of such solutions. Guided by this 
consideration, we examine in this paper two frequently discussed problems, thermo- 
haline convection and magnetoconvection, with a view to selecting a parameter 
regime that would make analytical solutions accessible. 

Two-dimensional nonlinear thermohaline convection in the Boussinesq approxima- 
tion has been considered by Veronis (1968 b)  and Huppert &Moore (1976), who obtained 
a variety of solutions by a numerical integration of the governing equations. More 
recently, Da Costa, Knobloch & Weiss (1981) utilized a five-mode truncation originally 
suggested by Veronis (1965) to  obtain nonlinear solutions that were in good qualitative 
agreement with the numerical results of Huppert & Moore. Moreover, the truncated 
equations could be solved in part analytically, and the topology of the solutions as well 
as their stability could be investigated. Two-dimensional Boussinesq convection in an 
imposed vertical magnetic field is a closely related problem although it allows for a 
more bewildering variety of nonlinear effects (Weiss 1981 a,b). Knobloch, Weiss & Da 
Costa (198 1) again found that a five mode truncation provides nonlinear solutions in 
good qualitative agreement with the numerical solutions and with the same wealth of 
phenomena. Although the work on the truncated modal equations provided a number 
of useful results, such as a direct determination of the stability properties of the branch 
of steady solutions as a function of the applied Rayleigh number, no rational approxi- 
mations to nonlinear solutions of the exact equations were obtained. Such information 
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has been thvs far confined to the results of modified perturbation theory (Veronis 
1968b; Huppert & Moore 1976; Knobloch et al. 1981). 

Both thermohaline convection and magneto-convection are examples of double- 
diffusive convection. As such they admit both steady convection solutions and oscilla- 
tory solutions. In  the parameter regime when the Rayleigh number for marginal over- 
stability R,(") is just smaller than that for the exchange of stabilities, RT(e), oscillatory 
convection sets in first, but in view of the proximity of RT'") to RT'") its amplitude 
remains small. Hence although the oscillations are fully nonlinear, they are accessible 
to a perturbation analysis based on powers of [RT'") - RT(O)]4. 

In this paper we carry out such an analysis, and find that in this parameter regime 
asymptotically correct solutions can be found in closed form. We find it convenient to 
make use of the truncated modal equations of Da Costa et al. (1981) and Knobloch et al. 
(1981) since they can be shown to be exact consequences of the full equations at  leading 
order in the expansion parameter. The procedure yields an evolution equation whose 
solutions are Jacobian elliptic functions, and an integrability condition whose solution 
determines the Rayleigh number corresponding to each solution. In  this way a non- 
linear amplitude-Rayleigh-number diagram can be constructed. A rather different 
procedure was used by Rubenfeld & Siegman (1977) in their study of the loop model of 
thermohaline convection. 

We find that the solutions are qualitatively similar to those obtaining at  larger 
amplitudes. Thus when the steady solution branch is subcritical, the branch of 
oscillatory solutions terminates on it with the period of the oscillations becoming in- 
finite (Da Costa et al. 1981), while when it is supercritical the oscillatory branch termi- 
nates on it via a Kopf bifurcation (Knobloch et al. 1981). The stability properties of the 
oscillatory solutions near this bifurcation are not yet fully understood. Knobloch et al. 
(1981) found, after a careful study, that the small-amplitude oscillations near the 
bifurcation point are unstable with a rather slow growth rate. On the other hand Weiss 
(1981a,b), studying the full equation, found regions in the neighbourhood of the 
bifurcation for which the oscillations appear to be stable, though stability is lost a t  
larger amplitudes. In the model presented here, the oscillatory mode is neutrally stable 
at  the bifurcation point, and unstable everywhere else at  leading order in the expansion 
scheme. Thus if the oscillations have aregion of stability, its size must be determined at 
higher order in the expansion, and this is too lengthy to attempt here. The more exotic 
phenomena (period doubling bifurcations, aperiodic oscillations) found a t  larger 
amplitudes are not present in this regime. 

In $ 2  we treat the simpler thermohaline problem in some detail, and employ the 
same techniques in $ 3  to study the magnetoconvectjon problem. Comparison is made 
in each case with the larger amplitude numerical results. Brief conclusions are presented 
in $4. 

2. Thermohaline convection 
2.1. Basic equations 

We consider two-dimensional thermohaline convection in a horizontal layer of fluid 
confined between the planes z = 0 and z = h, and adopt the Boussinesq approximation. 
The density is taken to be p = po( 1 - a(T - To)  +P(X - X,)) where T is the temperature 
and S the solute concentration, and a, /3 > 0. We restrict our attention to the case in 
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which the solute gradient is stabilizing and the temperature gradient destabilizing. 
Thus 

T = T o + A T ( l - Z + O ( s , z ) ) ,  S = So+AS(l -Z+X(x ,z ) ) ,  (2.1) 

where AT, AS > 0 .  We then scale the velocity u(x,z,t) = ( - a&,O,ax$) where I) is a 
stream function, with respect to the thermal diffusion velocity KT/h, where KT is the 
thermal conductivity. We also scale lengths with h and time scales with h2/KT and 
arrive at  the following dimensionless equations for 0, Z and $: 

+[a,v2 + J($, v2 $)I = RT ax o - R, a, 2 + v4 4,  (2.2) 

a,o+J($,@) = a , + + + 2 0 ,  (2.3) 

a,z+J(g,z) = a x $ +  (2.4) 

= V / K T ,  7 = K s / K T ,  RT = gaATh3/KTV, Rs = gpASh3/KTlJ, ( 2 . 5 )  

where 

and v, K,, g are respectively the kinematic viscosity, solute diffusivity and acceleration 
due to gravity. These equations are in the standard form used by Huppert & Moore 
(1976) and Da Costa et at?. (1981). As in these studies, we use the simplest boundary 
conditions: at z = 0 , l  there is no normal velocity or tangential stress, and no horizontal 
gradients of temperature or solute concentration, while in the horizontal direction, we 
impose periodic boundary conditions appropriate to a cell of (dimensionless) width A. 
Thus 

and 
4 = a:z 1 ~ .  = 0 = I: = 0, = 0,  1 

+ = a:,$ = a,@ = axz = 0, x = O , A .  

(2.6) 

(2.7) 

The system described above has the static (conductive) solution $ = 0 = C = 0. 
However, if RT is sufficiently large, this state is unstable. Linear stability theory 
(Baines & Gill 1969; Huppert & Moore 1976) shows that, as RT is increased, the first 
instability to occur is either 

} (2.8) 
( a )  a direct mode at RT = R$? if 7 2 1 or R, < Rsc, 

or ( b )  an oscillatory (overstable) mode at  RT = R$) if T c 1 and Rs > R,,, 

where R$), R$), R,, are defined in terms of the new parameters r$), rg),  r,, by 

with 
and 

where 

$3 = 77yl+h--2),J 

A =  l+a+7.  

(2.10) 
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In the following we shall assume that the parameters are such that overstable modes 
are possible, in which case r$?) is always less than r$?. 

Because of the nonlinearity of the equations, finite-amplitude periodic oscillations 
can exist when rT is in a (not necessarily small) neighbourhood of r$), while a family of 
steady solutions exists in a neighbourhood of r$). The relationship between the ampli- 
tude of convection and rT is known in each case from modified perturbation theory 
(Huppert & Moore 1976). For example, for the steady solutions, the amplitude a is 
related to r, by 

(2.11) 
where 

(2.12) 

and wo is the frequency of infinitesimal oscillations at rT = r$?. Thus r,") < 0 if oscil- 
lations are possible, and the steady solutions are subcritical. A similar expansion holds 
in the neighbourhood of r$?) for the oscillatory branch. For most values of the para- 
meters these expansions rapidly become inaccurate and the equations (2.2)-( 2.4) have 
to be integrated numerically. However in the case 0 < r, - r,, Q 1 the behaviour of 
both branches of solutions can be elucidated analytically, even when the structure of 
the oscillatory branch deviates markedly from that of the linearized theory. This is 
because in the neighbourhood of rs = rsc the oscillations have a low frequency: at 
rrs = rsc the linear stability problem for the static solution has a double zero eigenvalue. 
The orbital stability of the solutions can also be determined as a function of their ampli- 
tude. In  particular, we shall describe the manner in which the finite-amplitude 
oscillatory solutions form a single parameter family which comprises both the 
infinitesimal oscillation at rT = r$) and a heteroclinic orbit of indefinitely long period 
that joins the (unstable) steady solution branch that bifurcates from r$).  Such a 
family has been found by Da Costa et al. using numerical methods on a truncated set of 
modal equations. 

rT = r$) + TF) a2 + O(U*), 

~ r ~ ~ r , " )  = a ~ ~ + v ( r ~ - l ) r ,  = -72A-(1+v)(1+r)ri$, 

2.2 The problem in the limit r, -+ rsc 

We now suppose that r, is close to r,, and that rT is close to r$? and r$). Specifically, 
we write 

r, = rsc+ e2, e2 Q 1 (2.13) 

andfrom (2.10) thenfindthat 
v + r  v+7 

v ( 1 - r )  v+1 
rg)  = -+ (-) e2, 

v+7 1 
r$) =- - +- €2.  

v(1-7) 7 

We therefore set 
v+  r 

r, = - +p2, ~ ( 1 -  r )  

(2.14) 

(2.15) 

where ,u = O(1). Since rT is close to r!$, the amplitude of the motion is small (and 
previous studies show that it is O( 6 ) )  as are the amplitudes of 0 and C. From linearized 
theory we also find that the oscillation frequency wo is given by 

(2.16) 
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so that it is appropriate to define a new time scaIe 

t* = ept, (2.17) 

where the order unity factor p (cf. (2.9)) is introduced for convenience. To avoid any 
non-uniformity in the perturbation scheme, we will require that 7 and (1 - 7) are both 
of order unity. Then the stream function $ may be expanded in powers of s; the struc- 
ture of the nonlinear terms and the results of modified perturbation theory imply that 
the correct expansion is of the form 

$ =  e3$3f..., (2.18) 
where 

$l cc sin ( n ~ / h )  sin nx, cc sin ( n ~ / h )  sin 3m.2, etc.; 

0 and E can be expanded similarly. We may write 

2 
= - (2p)ih { e sin ( n ~ / h )  sin 7 ~ z  al(t*) + e3 sin ( n ~ / h )  sin 3nz a,(t*) + . . .}, 

7T 

(2.19) 

@ = 2 - { e cos ( q / h )  sin 772 b,(t*) + e3 cos ( n ~ / h )  sin 37rz b3(t*) + . . .> (%)” 
(2.20) 

1 -- e2sir27i-zc(t*)+ ..., 
1T 

C = 2 - (~~0~(7~~/h)sinnzd,(t*)+ s3cos(7q/h)sin3nzd3(t*)+ ...> (3” 
(2.21) 

1 -- e2sin 2nze(t*) + . . . , n 

where the O( e2) terms in 0 and Z refiect the tendency of the heat and solute to be 
confined to boundary layers near z = 0 , l .  

The expansion can be continued indefinitely, but the terms written are more than 
sufficient for our purpose. If the expansions (2.19)-(2.21) are substituted into the 
governing equations (2.2)-(2.5) and r, and rs are written in terms of e using (2.13), 
(2.15), we obtain a hierarchy of ordinary differential equations for the modal ampli- 
tudes, of which the first five are (Veronis 1965,1968b;DaCostaetal. 1981) 

sb; = - b, f a ,  - e2a,c + O( e4), 

€C’ = a[ - c + a, b,] + O( € 2 ) ,  

ed; = - dl + a, - e2a1 e + O( e4), 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

where the prime denotes differentiation with respect tot * and TD = 4n2/p (0 c w < 4). The 
O ( @ ) ,  O(e4) corrections, involvinga,, b,, ar~dd~arenotrequiredin the present calculation. 

ee’ = w( - 7e + a, d,) + O(e2),  
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We now seek a solution to this system as an expansion in powers of E .  Before doing so 
we note that Da Costa et al. solved equations (2.22)-(2.26) ignoring the higher-order 
terms, even when E = O( 1); it must be emphasized that the analysis to follow includes 
no such arbitrary truncations. 

2.3. Solution in powers of E 

For brevity we now drop the subscripts on the leading order amplitudes. Equations 
(2.22)-(2.26)showthatfor e < 1, 

a 21 b N- rd ,  c N ab, e N r-lud. 
Hence if we set 

(2.27) 

b = a+ eg, d = a / r +  eh, c = a2+ ek, e = a2/72+ el, (2.28) 

it then follows from (2.23) that 

g = -b ‘ -  aac+O(e3) .  (2.29) 

Elimination of b using (2.28~) and repeated use of this equation and of (2.29) gives 

The same procedure applied to k gives 

2aa’ k = ag--+O(s) = -UU’ 
W 

(2.30) 

(2.31) 

so that, finally, using (2.28~) to substitute for lc we obtain 

= -a’+ E ( a ’ ’ - a 3 ) -  €2 (2.32) 

Similarly, 

(2.33) 

The expressions obtained for g and h can now be substituted into (2.28a, b)  and then 
into (2.22) to give 

a’ E h = 

+O(e4). (2.34) a( 1 - 7) 

It is easily verified that the O( 1) and O( E )  terms in this equation vanish identically, so 
that a factor e2 may be divided out leaving 

a’’ - a3 + Nu = e.F(a) + O( €2), (2.35) 
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and 
N = ( l - p ~ ) g / A ,  A = 1 + g + 7 ,  (2.36) 

F(a)  = (1 + 7) 1 + ( .//I - ala2 (4 + z))  +$ (1 - p ~ ~ ) .  (2.37) 

Since a,, b,, and d, do not appear in (2.35), this equation gives the leading-order be- 
haviour both of the full partial differential equations and of the 5th-order truncated 
system considered by Da Costa et al. (1981). Note that the order of the equations has 
been reduced to  3: the implications of this are discussed near the end of the section. 

2.4. T h e  oscillatory soZution 

For small ewe must have, a t  leading order, 

~ “ - d + N a  = 0. (2.38) 

If N > 0 (i.e. r, < r$?) this equation has periodic solutions and can be solved in terms 
of a single parameter family of Jacobian elliptic functions. If the parameter 
m[O < m c 11 is defined in terms of the period II of the oscillation by 

where K(m) is the complete elliptic integral of the first kind, then we may write 

(2.39) 

(2.40) 

(For details of the Jacobian elliptic functions and their integrals, see, for example, 
Davis (1962), but note that he uses k2 where we use m.) It can then be easily shown that 
the maximum amplitude amax and the root mean square amplitude arms are given by 

(2.41) 

where E(m) is the complete elliptic integral of the second kind. It remains to determine 
the parameter m that corresponds to a periodic solution for given p. This may be done 
by the method of averaging (Jordan & Smith 1977). In  this case the slowly varying 
quantity is the Hamiltonian b, defined a t  leading order by 

If we now multiply (2.35) by a’ we obtain 

(2.42) 

- eu’F(a)+O(e2) ,  
d b  
dt* 
- _  (2.43) 
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so that devolves on the slow time scale T* = et”. The right-hand side varies on the 
time scale t*, but only its average will affect 8. Thus we have, since d is independent of 
t* to leading order, 

(2.44) 

where a is evaluated for e = 0 and 

(. . .) = n-ljon . . .at*. 

The integral on the right-hand side can be found in terms of N and m, using the 
properties of elliptic functions. After some algebra we find that (2.44) can be written 
in the form 

(m)), (2.45) 

where I,(m) and J l (m) are functions of m only, and are given in the appendix. Equation 
describes the evolution of m and hence d at fixed N or p. The critical points of this 
equation give the periodic solutions of the problem. Equating the right-hand side to 
zero we obtain 

where 

and 

(2.46) 

(2.47) 

Equations (2.15), (2.40) and (2.46) determine parametrically the amplitude of the 
oscillations as a function of the Rayleigh number rT. Since y is always positive and 
a < 1 it follows that ,UT < 1 for all m ;  moreoverf, (m) is a monotonic function of m, 
rising from zero when m = 0 to 0.2 when m = 1. Figure 1 shows amax, arms and Il as 
functions ofp for c~ = 1, T = 1/8 and w = 8/3 (the last, corresponds to cells with h = J2 
and gives the most unstable mode for rs -+ 0) and figure 2 (a) shows a as a function oft* 
for a representative value of p. For m = 0 we recover the linearized result: p = a/? 
and the amplitude is infinitesimal, in agreement with (2.14 a). 

Another check is provided by comparing (2.4b) for small values of m with modified 
perturbation theory: we have 

fl(m) = $m+O(m2), m < 1 ,  

so that ,UT = a + & y m ( l - a )  

from (2.4). However, from (2.41) we have 

2cT 
l + c T  

amax 2 = - ( 1 -  7)m+O(m2); 

so eliminating m between these two relations, we obtain 
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FIQURE 1. (a )  a:,,, ( b )  a:ms, ( c )  7~ (the period) for the oscillatory solution as functions of p for the 
thermohaline problem when CT = 1, T = 0,125 and P = $. The dotted line shows the (unstable) 
steady solution branch. p,, the critical value of p, is 2.674 in this case. 

which is the same result as that obtained directly from the modified perturbation 
theory about r!$ (Huppert & Moore 1976) in the present limit. Note in particular that 
r$') is always positive so that the bifurcation at  r$) is always supercritical. The Hopf 
bifurcation theorem (Hopf 1942) then shows that the branch of oscillatory solutions is 
stable in the neighbourhood of r$).  

For larger m, p continues to increase monotonically. In the limit m -+ l-,fi (m) -+*, 
so that 

1 5 a + y  
P+PC = 4-1. 7 5 + y  (2.48) 

Then a(t*) 21 & N t  tanh (t*JN/2) for I t * ]  < n / 4 ,  with the period II approaching 
infinity as - In ( I  - m). We conclude that m = 1 almost certainly represents a hetero- 
clinic orbit that connects the two unstable steady branches (for negative and positive a )  
the latter are given in the limit by (2.38) as 

and are also drawn in figure 1. It may be checked that these points indeed lie on the 
steady solution branch given by (2.11) in the present limit. These points of contact are 
then the 'critical points', where the limit cycle of the periodic solution intersects the 
steady solution branch. For p > pLc there are no periodic solutions, at least; in the 
parameter range under discussion. Figure 3 (from Da Costa et ab.) shows a sketch of the 
topology of the phase diagram. No new effects are found by varying (r, r or m, so that 
the example shown is qualitatively correct for all parameter values. 
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FIGURE 2. Graphs of (a)  sn (z10.99), ( b )  cn (z10.99), ( c )  dn (zlO.99), illustrating the different 
possible forms of the amplitude a as a function oft* (a is snodial in the thermohaline problem, 
but in the magnetic problem the type of motion depends on the sign of the parameters M and N ) .  

(a ( b )  (C) 

FIGURE 3. Simplified sketch of the phase diagram (ordinate a,  abscissa a’) for the thermohaline 
problem (and for the magnetic problem when M ,  N >  0) for (a )  p> pc, ( b )  p> pc, (c) p> pC. Note 
that no periodic solution is possible in (c) 0 is the unstable solution a = 0, L the stable limit 
cycle (when it exists), and U the unstable steady solutions of finite amplitude. 

At this point it is necessary to remark on the possible non-uniformities in the 
expansion scheme. Firstly, it  is clear that (2.35) represents a potential singular per- 
turbation problem, since F(a)  contains higher derivatives of a than the left-hand side. 
Since the truncated system possesses periodic solutions, the corrections will remain 
small unless the period of the oscillation becomes very short; this does not however 
happen in this problem, or in the more involved magnetic problem considered in the 
next section. Secondly, for the averaging procedure to work the period must not be too 
Zong, for otherwise (2.44) would not be valid. Thus as m+ 1 in the calculation described 
above, II N In (1  - m) and so the theory does not apply for (1 - m) 6 0 (exp ( - E-l)).  
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It can be shown that if m is this close to unity, pe - p  = O(t-lexp (- 2e-l)) so for small 
E the solution is valid everywhere except in an asymptotically small neighbourhood 
ofpc. The third problem concerns the reduction of the equation from fifth order to two 
as a result of the expansion. While the equations certainly have a periodic solution in 
the neighbourhood of rT = r$), there remains the possibility that other solutions exist 
which differ from this periodic solution, but collapse on to it in the (a, a‘) phase plane 
in the small e limit. We cannot investigate this possibility here; however, the close 
qualitative correspondence between our results and those of the full numerical problem 
suggest that even if there is a multiplicity of solutions the periodic solution we have 
found is the stable one. 

2.6. Orbital stability 

The periodic solutions we have found may or may not be unstable to small perturba- 
tions; thus we must examine their orbital stability. We therefore return to the relation 
(2.45)whichshowshowmchangeswhen (2.46)isnotsatisfied. Settingm = m,+ 6m(T*) 
where m, is that value of m for which (2.46) holds, we have at  leading order 

(2.50) 

Thus (1 /6m)  d(Sm)/dT* has the opposite sign to dfl/dm and hence since d f l / d m  > 0 for 
all m c 1 ,  stability is assured if ,u c pc. For p > pc the periodic solution does not exist 
and since the steady branch is locally unstable, the solution must move out of the 
domain of the theory. 

2.6. Comparison with previous work 

The truncated equations (2.22)-(2.26) studied above represent a rational approxima- 
tion to the full problem (2.2)-(2.4) for E < 1. However, Da Costa et al. showed by a 
combination of numerical and analytical techniques that their solutions are in good 
qualitative agreement with those obtained by Huppert & Moore (1976) for the full 
problem, even when E = O( 1 ) .  In particular, they found that provided the amplitude 
of oscillatory convection is moderate, it increases monotonically with the applied 
Rayleigh number, and that the oscillatory solution branch terminates on the unstable 
subcritical steady solution branch where the oscillation period becomes quite suddenly 
infinite. They interpreted this behaviour in terms of a limit cycle becoming singular 
and joining the two saddle points corresponding to the subcritical steady branch 
(figure 3). With rT increased beyond the critical value, no oscillatory solutions were 
found and the solution jumped to a higher-amplitude (stable) portion of the steady 
branch. All these phenomena persist for smaller values of E and are recovered here 
analytically; in particular the singular limit cycle and the value of rT at which it forms 
are given by equation (2.48) in the present limit. This is strikingly demonstrated by 
comparing figures 1 and 2(a), of the present work with figures 1-4 of Da Costa et al. 
However the more exotic behaviour of the solution at  large amplitudes found by these 
authors remains inaccessible analytically. 



302 E.  Knobloch and M .  R. E. Proctor 

3. Convection in a vertical magnetic field 
3.1. Basic equations 

I n  this section we analyse the problem of two-dimensional convection in a horizontal 
Boussinesq layer of electrically conducting fluid in an imposed vertical magnetic field 
that is uniform and of magnitude Bo in the absence of motion. As we shall see, the 
linearized stability theory for this problem is almost identical to the thermohaline 
problem treated in 5 2 ,  but the presence of a quadratic restoring force in the equation 
of motion, coupled with the fact that  the magnetic field tends to  form boundary layers 
that are vertical rather than horizontal, means that a far greater variety of behaviour 
is possible when nonlinear effects are taken into account. The full range of phenomena 
is strikingly demonstrated in the numerical work of Weiss (1981 a, b )  and the analysis 
of a truncated modal system (showing the same bifurcation properties) by Knobloch 
etal. (1981). 

If effects of magnetic buoyancy are neglected, then the Boussinesq equation of state 
is p = p,, ( 1  - a(T - T,,)). The dimensionless governing equations are then conveniently 
written in terms of the fluctuation temperature 0 (equation (2.4)),  the stream function 
$ (equation (2.2)) and a flux function A ( x ,  z )  where B, the magnetic intensity, is 
defined by 

B = IB,l{b + ( -  a&, O,a,A)}. (3.1) 

These equations take the form (Weiss 1977) 

where c7 and R, are given by (2.6), and c and Q are defined by 

(3 .5)  

Here 7 is the magnetic diffusivity of the fluid, and ,uo its permeability. The boundary 
conditions on $ and 0 are the same as those of 3 2 ,  while A (x, z )  satisfies 

A = 0, x = 0,h;  a,A = 0, z = 0 , l .  (3.6) 

Thus the total flux in each cell is fixed, but the field lines are free to  move horizontally 
along the upper and lower boundaries, though they must remain vertical there. 

As in the thermohaline problem, the system has the static solution 1c. = 0 = A = 0. 
The linearized stability theory can be simply stated by using notation similar to that of 
5 2 .  Writing 

7r2 772 
r, = h23 RT, q = - Q ,  p = n2( 1 + (3 .7)  P P 2  
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and A = 1 + (T + 5, the results are identical to those of the thermohaline problem with 
rs replaced by CQ and r replaced by 5. Thus we have (Weiss 1964; Knobloch et ak. 1981) : 

C(g+ 1) ( a )  if C > l  or q < q c = - - - -  
4 1  - tJ 

instability sets in as a direct mode at  

( b )  if 

instability sets in as an oscillatory mode a t  

We shall in what follows sup9ose that case (ii) applies. As in the thermohaline case, a 
branch of finite amplitude oscillatory solutions bifurcates from rg), and a branch of 
finite-amplitude steady solutions from r$) .  We wish to study how the oscillatory solu- 
tion changes with position on the branch. I n  the present case, unlike the thermohaline 
problem, parts of the branch are typically unstable, so that they cannot be followed by 
numerical means. Analytical results are available only when q is close to  qc and the 
period of the oscillations is long. Even in this limited range, the variety of behaviour 
is very wide. Depending on the parameters, both the steady and oscillatory branches 
can be either subcritical or supercritical. If the steady branch is subcritical, the oscil- 
latory branch is supercritical and stable, and ends on the steady branch via a hetero- 
clinic orbit as in the thermohaline case. If both branches are supercritical, the oscil- 
latory solution is ‘cnoidal’ rather than ‘snoidal’ in form; it eventually loses stability 
and then turns into a ‘dnoidal’ oscillation with non-zero mean (see figure 2) which 
eventually joins the steady branch via a Hopf bifurcation. Above this bifurcation the 
steady branch is stable. There are other, less interesting possibilities, also. 

As in the previous section, we suppose 0 < q - q e  < 1 and make an expansion in 
powers of (q  - q,)&. Again we shall find it convenient to write down a modal representa- 
tion of the equations, and apply the same methods as before to obtain a solution. 

We set 
3.2. The problem in the lintit q + qc 

q = qc+e2,  € G 1 ,  

and then from (3.8)) (3.9) find that 

We thus set 

(3.10) 

(3.11) 

(3.12) 

where p, = O( 1). As before, the amplitude of the motion is of order E in this case, and 
the frequency of linear oscillations is also of order E .  We therefore define 

t “  = cpt (3.13) 
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as a new time scale. Following the methods that lead to  (2.19)-(2.21), we write down a 
modal representation of $,@,A : 

+ e3 sin (7r~ /h )  sin 3772 a,,(t*) -t . . . , 

1 
e c o s ( n ~ / h ) s i n n z b , , ( ~ * ) - -  e2sin2n2c(t*) 

n 

(3.14) 

S~{COS ( 3 4 4  sin nz: b3,(t*) + cos (7rx/h) sin 37rx b13(t*)} + . . ., (3.15) 

h 
hesin (nx/h) cos7rzdllL(t*) +- ~ 2 s i n ( 2 n ~ / h )  e(t*) 

7r 

he3 (sin (37rx/h) cos mz d,,(t*) + sin ( n ~ / h )  cos 37rz d13(t*)} + . . . . (3.16) 

Then substituting into (3.2)-(3.4), we obtain a set of modal equations of which the first 
five are (cf. Knobloch et al. 1981) 

(3.17) 

Ed;, = -<all +a,, - e2all e + O( e4), (3.20) 

(3.21) 

where the prime again denotes differentiation with respect to t*. The chief difference 
between this and the thermohaline problem is the different appearance of a in (3.21) 
than in (2.26) and the nonlinear term in (3.17) that arises from the Lorenz force. As 
before 0 < a < @. This problem can be solved sequentially in powers of e just as the 
thermohaline problem was. We therefore omit the details and move on directly to the 
consideration of the resulting simplified system. 

ee' = - (4 - m)[e + mall d,, + O( s2), 

3.3. Solution of the reduced equation 
After some algebra we finally obtain an equation for a,, (with the subscripts dropped 
for convenience) of the form 

with 
a"-- Ma3 + M N u  = d'(a), 

31 = - rP)uc /A ,  N = - (1 - - ,u ) / r f )  

(3.22) 

(3.23) 
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where 
F ( a )  = u[Ca2a' + Da"' + ( 1  -p&']/A, 
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(3.24) 

C A  
!3 

D = 1+-+--. J 
It will be noted that we have used some of the same symbols as in $2, so as to make 
comparison simpler. 

The quantity r?) appearing in (3.23) is defined by 

where (3.25) 

The significance of the parameter rp)  can be seen if we investigate the steady solutions 
of (3.22) (for which F ( a )  = 0). Clearly 

so that (3.26) 

The same result follows from modified perturbation theory applied to the full equations 
in the present limit. Thus if r,f) > 0, the steady branch is supercritical, andif r f )  < 0 it  
is subcritical. It is clear that the sign of rp)  has an important effect on the solution of 
(3.22). Before we can proceed to enumerate the different cases that arise, we should 
obtain the energy evolution equation. As before, we define 

so that 

J d&/dT* = ( u 'F(u ) ) )  T* = Et*.  

(3.27) 

By using the leading-order form for a, we obtain 

d&/dT* = a[( u ~ u ' ~ )  (C + 3MD) + ( ~ ' 2 )  (1 -pc- D M N ) ] / A .  (3.28) 

It will emerge that both terms on the right-hand side can take either sign, and do not 
depend monotonically on 8) so that stability is no longer assured. I n  order to evaluate 
the terms in brackets we have to solve (3.22) with E = 0. The solution depends on the 
sign of d'). 

3.4. Solution in the case rg) < 0 (subcritical steady solution) 

I n  this case M and N are both positive and (3.22) has the same form as (2.35) (p cannot 
be greater than unity since otherwise the solution is not periodic). In fact, if the period 
is given by 

(3.29) 
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and 

(3.30) 

Substitution in (3.28) then yields 

where p = (1 + cr)/A, I ,  (m) and J ,  ( m )  are defined as before, and 

2 u 
(a -- 1 + (m - 2)/(4 - -- 

4 - w  4 - a  

Thus we have, for the periodic solutions, 

where fi ( m )  is defined as in $ 2 .  As before, for small m, we find 

where 

(3.33) 

(3.34) 

in agreement with the modified perturbation result derived by Knobloch et al. Hence 
rf') has the same sign as y ,  and in the present case when rf) < 0, y is always positive, as 
we shall show below. Thus the bifurcation is supercritical, and the oscillatory branch 
meets the unstable steady branch at p = pc = (5a+ y ) / (5+  y).  The branch is stable 
throughout, just as in the thermoha1,ine problem, although the same reservations apply 
about the validity of the scheme when ,u N pc, A typical solution is shown in figure 4. 
The case rp)  > 0 is much more complicated, and we consider it next. It will be found 
helpful for what follows to refer to figure 5 .  

3.5. Solution in the case rg) > 0 (supercritical steady solution) 

This case, like Gaul (Caesar 51 B.c.) ,  must be considered in three parts. To begin with, 
we suppose that we are in the neigh'bonrhood of r$) so that ,.!A < 1. Then M < 0,  N < 0. 
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FIGURE 4. As for figure 1, but for the magnetic problem in a case where the steady solution 
branch is subcritical (case (i) of $3 .6 ) .  Particular parameters are: w = 8/3, CT = 1 ,  5 = 0.5;  
#e) - - -7.667, OL = 0.375, = 5.267. 

The equation ( 3 . 2 2 )  is then solved parametrically by 

m(1-m) 
(1 - 2rn)2’ 

Q = - M N 2  

Substitution into ( 3 . 2 8 )  thengives 

I 
( 3 . 3 6 )  

where I ,  (m) ,  J ,  (m) are given in the appendix, and y is the same as in ( 3 . 3 2 )  (but note 
the modulus sign in the denominator of that expression). Thus the value of ,u for 
periodic solutions is given by 

( 3 . 3 7 )  

This regime corresponds to the segments A S ,  AS’ in figure 5 .  
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FIGURE 5 (a). For legend see opposite. 

For m close to  zero, the results of modified perturbation theory are recovered as 
before. As m+ i-, f z  (m) -+ 00 and p-+ I-. fz (m) increases monotonically if mcc fr, SO 

that  if y > 0, dpldm > 0 and it may be verified from (3.36) that  the solution is stable 
in this case. If on the other hand y < 0, then p 6 a for all m which yield a value of ,u that 
is less than 1. The solution is then subcritical and unstable. 

Although there is a singularity in the representation a t  m = 8, p = 1, there is no 
singularity in the solution there and in fact, as might be expected, the cnoidal solution 
branch passes smoothly throughp = 1. 

Ifwenowturntothesohtionswhichobtainforp > 1,wenotethatM < OandN > 0. 
Then since also m > fr the solution (3.35) still holds for the cnoidal modes, as the 
quantities under square root signs remain positive. Substitution into (3.28) then yields 

so that periodic solutions satisfy 

(3.38) 

(3.39) 

corresponding to the segments SBC, S'B'C' in the figure. This solution is only valid if 
y > 0. Thus dpldm has the opposite sign to df,/dm, and near m = i+, df,/dm < 0 SO 
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FIGURE 5 .  ( a )  uLax (curve ASBCD) and a:m8 (curve AS’B’C’D) for the magnetic problem in case 
(ii) of $3.6 (T:)> 0, y> 0 )  as EL function of p.  The straight line EDF is the steady solution 
branch. Dotted and full lines denote unstable and stable solutions, respectively. AB(AB’) stable 
cnoidal solution ; BC(B’C’) unstable cnoidal solution ; CD(C’D) unstable dnoidal solution. ( b )  The 
period n of the above cnoidal oscillations and 2n for the dnoidal oscillations (segment C D ) .  
Parameters are: a = 0.4, CT = 1 ,  5 = 0.35; T;) = 3.64, a = 0.236, y = 1.463. 

that p increases with m. However, fi reaches a minimum as a function of m a t  m = 0.93, 
where i t  takes the value 6 = 0.752, and then increases to  0.8 as m -f I-. Investigation 
of (3.38) shows that the solution is stable if and only if df,/drn < 0. 

Hence the cnoidal solution that bifurcates a t  p = y loses stability a t  p =,us = (yS- a)/ 
(yS- l), a t  whichpointp has a maximum as a function of amax (see figure 5). If y < 1/S 
then ps is ‘off scale’ and so the oscillatory branch goes ‘to infinity’ without losing 
stability; a higher-order expansion is necessary to determine where the maximum of ,LL 

occurs. As m is further increased p and amax both descend and at  m 2: 1, p = (4y - 5a)/ 
(4y - 5 ) ,  the period tends to infinity and the (unstable) solution then takes the form 

(3.40) 

The situation becomes clearer if one imagines a torepresent the co-ordinate of a particle 
in a potential well (the general shape of which, for r p  > 0, p > 1 is shown in figure 6).  
The cnoidal oscillation has zero mean, and is represented by a particle of positive 
energy. A s p  changes both the shape of the well and the energy of the particle change, 
and as m 4 1- energy of the cnoidal oscillation tends to zero and the particle can only 
just rearh the origin. 

a = & (2Nh)sech[( - M N ) t t * ] .  
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"t 

FIGURE 6. Sketch of the potential well W ( a )  that controls the form of a(t*) in the magnetic 
problems when $)> 0, p> 1. It may be se0n that the oscillation can be of either cnoidol (zero- 
mean), or dnoidal (non-zero mean type), depending on its energy. 

If the particle energy is negative oscillations are still possible but now, with non-zero 
mean, representing motion about the steady finite-amplitude solution given by the 
minimum of the potential for either sign of a. These are the 'dnoidal' solutions which 
we discuss next. Note first, however, that if y < 1.25 the transition point between 
cnoidal and dnoidal motion is ' off scale ' and cannot be found by the theory. 

Solutions to ( 3 . 2 2 )  with non-zero mean, and M < 0,  N > 0 as above, may be written 

( 3 . 4 1 )  

Note that d < 0. When m is small, (9 is almost N ;  i.e. the solution represents small 
oscillations about the steady branch. When m 2: 1 ,  the period to infinity and the solu- 
tion then tends to the same limiting Sorm as the cnojdal branch (except, of course, that 
the ratio of the two periods tends to  2 as the dnoidal oscilIation takes half as long to be 
traced out). 

By analogy with previous cases, we can show that 

( 3 . 4 2 )  
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where f, (m) = I, (m)/J, (m) (see the appendix), and that the solution is stable or 
unstable according to  whether df3 (m)/dm is positive or negative. I n  fact f3 (m) is a 

dm is zero only a t  m = 0, and negative elsewhere. Thus the dnoidal branch is unstable, 
except possibly in aneighbourhood ofm = 0. If m 5 O( e ) ,  the slope o f a ( p )  is determined 
by higher-order terms in the expansion, so that the bifurcation may be stable or un- 
stable locally. This part of the solution corresponds to the segments CD, C’D’ in 
figure 5 .  

The value p = ( y  - a)/(? - 1) is of particular interest, since it represents a point 
where the steady solution can coexist with infinitesimal oscillations. It is thus a Hopf 
bifurcation point, and marks the place where the steady solution branch, unstable near 
a = 0, gains stability to  small perturbations as a increases. This fact provides a check 
on the analysis, since the truncated modal expansion has similar behaviour even when 
e = O( 1).  The condition that the dispersion relation, characterizing the growth rate of a 
small disturbance from the steady solution, possesses two complex conjugate imaginary 
roots (the condition for a Hopf bifurcation) has been given by Knobloch et al. (1981). 
It can be shown, after much algebra, that the condition reduces to  p = ( y  - a ) / ( y  - 1) 
in the present limit, as required. 

As previously mentioned, the leading-order terms in the expansion give no informa- 
tion about the stability of the dnoidal solution in the neighbourhood of the Hopf 
bifurcation; the determination of the exact nature of the bifurcation when e < 1 would 
require a higher-order calculation. However, Knobloch et al. (1981) have made studies 
of the case E = O( l ) ,  and find what appear to be subcritical (unstable) oscillations about 
the steady branch. While the modal equations show the property convincingly, the full 
two-dimensional problem studied by Weiss (1981 a,b) apparently exhibits super- 
critical (stable) oscillations, although these may be unstable oscillations with a small 
positive growth rate. 

The other interesting feature of the solution when rp) > 0, the transition from oscilla- 
tions with zero mean to  ones with non-zero mean, cannot be observed in a numerical 
study since the change takes place in the unstable region of the branch. However, the 
‘doubling back’ of the oscillatory branch is observed in the numerical experiments, 
and is probably necessary for the termination of the oscillamy branch at a Hopf 
bifurcation. The results presented here reinforce the belief that even when e is not 
small the oscillations with non-zero mean join those with zeio mean in a straight- 
forward manner. 

slowly decreasing function of m, being equal to  1 at  m = 0 and $ at m = 1 , anddf, (m)/ 

3.6. Classification of the solutions 

It is clear from what has gone before that the variety of solutions in the magnetic 
problem, though large, depends essentially on two parameters, rf) and y. The different 
cases that can arise in our limit are summarized as follows: 

(i) r!f) < 0; then y > 0, the solution is snoidal and meets thesubcritical steadybranch 
in a heteroclinic orbit, without losing stability. 
(ii) r f )  > 0, y > 6-1 = 1.329; the branch begins as a stable cnoidal oscillation, which 

loses stability a t  p = ( y & - a ) / ( y s - l ) ,  changes form a t  p = (4y-5a) / (4y-5)  to a 
dnoidal oscillation, and ends a t  p = ( y  - a ) / ( y  - 1)  in a Hopf bifurcation on the super- 
critical steady branch. 

(iii) rg) > 0, 6-1 > y > 1.25. The stable cnoidal branch disappears ‘off scale’; an 
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( c )  v = 105. 
FIGURE 7. Location in (5 ,  w) space of the six regions describe in $3.6 for (a) g = ( b )  g = 1 ,  

unstable cnoidal branch appears from infinity, becomes dnoidal and ends in a Hopf 
bifurcation. 

(iv) T?) > 0, 1.25 > y > 1 .  The stable cnoidal branch disappears 'off scale; an un- 
stable dnoidal branch appears from infinity and ends in a Hopf bifurcation. 

(v) T$@ > 0, 1 > y > 0. The stable cnoidal branch disappears 'off scale ';there is no 
Hopf bifurcation within the limits of the theory. 

(vi) rf) > 0, y -= 0. The cnoidal branch is subcritical and unstable and does not 
meet the steady branch (within the regime of validity of the theory). 

Figure 7 shows the regions of (6, w )  space corresponding to the various cases when 
(a)  IT = 10-5, (b )  = 1, ( c )  IT = 105. It will be seen that there is little qualitative differ- 
ence between small and large IT in terms of the relative sizes of the various regions. 

The truncated equations (3.17)-(3.21) provide a rational approximation to the full 
partial differential equations (3.2)-(3.4) when e is small. However, the structure of the 
solutions and their stability properties are in excellent qualitative agreement with the 
numerical solutions both to the full two-dimensional problem (Weiss 1981a, b )  and to 
the truncated modal system studied lby Knobloch et al. (1981). The stable portions of 
the numerical solutions agree well in their morphology with those found here, and it is 
entirely plausible to suppose that they are connected by an unstable regime of the kind 
found in the present paper. The only inajor question that is not resolved by the theory 
at leading order is the supercriticality of the Hopf bifurcation, as previously discussed. 
The behaviour of the various bifurcations etc. can be conveniently shown in a phase 
diagram as in figure 8. Similar bifurlcation diagrams have been obtained by Takens 
(1974) and Carr (1979) in generic studies of oscillatory instability. 

The general remarks on the validity of the analysis made at  the end of Q 2 apply with 
equal force to the calcuIations of this section. One further difficulty arises in the mag- 
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A 

FIGURE 8. Sketch of the phase portraits for the magnetic problem when 0, ?$)> 0. ( a )  
Amplitude-Rayleigh-number diagram, showing the five regions of interest. (6) Phase portraits. 
Case A : The origin 0 is an unstable node or focus. Case B: 0 is now a saddle point, and the new 
singular points S ,  S’ corresponding to steady non-zero solutions are either unstable nodes or foci. 
Case C: S ,  S’ become stable, and unstable limit cycles (dashed) appear around them. Case D: 
Unstable heteroclinic orbits of infinite period form. Case E :  Two ‘ concentric ’ limit cycles 
surround all three fixed points, the inner being unstable. The vertical and horizontal axes are 
a and a’ throughout. 

netic case: if T$) is very small ( < O( 6 ) )  then the question whether the steady solution 
branch is subcritical or supercritical is resolved by higher-order terms. The periodic 
solutions will then be sinusoidal in form except near ,u = 1, where these higher-order 
ternis become important. I n  this case the amplitude equation will contain a quintic 
nonlinearity (cf. Rubenfeld & Siegmann 1977). The necessary calculations, which 
wotild be very involved, are outside the scope of the present paper. 

4. Conclusions 
I11 previous sections we have treated two well-known double-diffusive convective 

stability problems in a regime in which the Rayleigh numbers for the onset of over- 
stable oscillations and for the onset of direct modes differ by only a small amount. In 
this regime the frequency of theoscillations is low, and theleading-order approximation 
to the equations governing the time development of the amplitude of the convertion 
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is that of a nonlinear oscillator. Higher-order terms fix the amplitude of the oscillation 
as a function of the Rayleigh number. For the thermohaline problem the steady branch 
of solutions is always subcritical and the oscillatory branch is supercritical and stable, 
and meets the branch in a heteroclinic orbit without losing stability. The magneto- 
convection problem has much more variety; the oscillations may be stable or unstable, 
and meet the steady branch either in a heteroclinic orbit or in a Hopf bifurcation 
depending on the physical parameters of the problem. All the properties can be 
explicitly demonstrated analytically, and they are in excellent qualitative agreement 
with numerical computations carried out for the full system of equations, in regions 
where agreement is to be expected. .Analytical methods allow the solution to be found 
even when it is unstable, and we have been able to show that there is only one branch of 
oscillatory solutions, which changes its character but evolves continuously as the 
parameters change. 

There are, of course, other double-diffusive problems which can be treated by this 
method. Foremost among them is that of convection in a uniformly rotating layer, for 
which overstability is possible if t,he Prandtl number CT < 1 (Veronis 1959, 1966, 
1968a) .  The complexity of this problem is midway between that  of the thermohaline 
and magnetic ones. We have investigated the solutions and found no qualitative 
differences between this problem and those discussed in the present paper; we there- 
fore do not present the results a t  this time. 

The present work is, to our knowledge, the first to show explicitly how oscillatory 
solutions evolve and change a t  finite amplitude. It is restricted in that only a particular 
planform of convection (two-dimensional rolls in this case) can be considered. We are 
currently considering extensions of the theory, since one of the prime objectives of any 
non-linear analysis must be to determine the planform that actually evolves from a 
given set of initial disturbances. One limited step is to consider those values of a for 
which the layer loses stability to two different modes a t  the same value of RT, but 
calculations on this are as yet at a preliminary stage. 

We are most grateful to A. M. Soward for communicating to us his unpublished 
work on the magnetic problem, in which he presents an alternative derivation of the 
evolution equation (3 .22) .  We have benefited greatly from stimulating discussions with 
N. 0. Weiss. E. K. is grateful for support from the Harvard Society of Fellows and 
St. John’s College, Cambridge. 

Appendix. Derivation of the functions Ik(m), Jk(m), k = 1,2,3. 

From (2.44) we have 
( a )  lThermohaline case 

or 

N2- dT* ( ~ ( l + w ~ ) ~  ) = ( l + ~ ) ( ~ a ’ a ’ ’ ’ - - u ’ 2 a 2  ( 4 + -  5)) + - ( u ‘ ~ ) > ( ~ - , u T ~ ) .  7: ( A 2 )  

Now a t  leading order a’” = 3a2a‘ - Nu’ (from ( 2 . 3 5 ) ) ,  so the right-hand side of (A 2) 
can be written entirely in terms of the two averages (at2) ,  ( u ~ u ’ ~ ) .  It is clear from 
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the solution (2.40) that the former of these is equal to  N2, and the latter equal to  N3,  
times a function of m alone. After some manipulation, and use of formulae given by 
Davis (1962), we obtain 

(a’,) = N2J1(m); J,(m) = 2 (m- l ) - t - (m+ 1)- E(m)] /3( 1 + m),, 
K(m)  

(A 3) 

where K(m) ,  E(m)  are the complete elliptic integrals of the first and second kinds 
respectively. Substitution into (A 2) then yields (2.45). 

(b)  Mugnetic case 

From (3.28) we can see that as in the previous case the important averaged quantities 
are once again ( a2aI2) and ( a’,). The type of solution depends on the parameters 
M a n d N .  

(i) For snoidal solutions, M ,  N > 0; then 

(cz~u’,) = M N 3 1 ,  (m) ,  (a’,) = MN’J, (m), (A 4) 

where I ,  (m),  J ,  (m) are defined as above. 

(ii) For cnoidal solutions, M < 0 and N can take either sign; then 

(iii) For dnoidal solutions, M < 0, N > 0; then 

(u~u”) = - MN313  (m); \ 
(m-1)(2-m)+2(1-m+m2)-  E(m)] / 15( 2 - w ) ~ ,  I 
2(m-1)+(2-m)-  E(m)] /3(2 -m)’. 

(A 6) 
K(m)  

(a’’) = - MN2J3 (m); 

K(m)  
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